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Received 27 September 1988 

Abstract. A detailed analysis of Car and Parrinello’s molecular dynamics method is pre- 
sented. It is shown that the degrees of freedom associated with the electronic wavefunctions 
do not behave as classical degrees of freedom because their motions are damped by the 
constraint of normalisation of the wavefunctions. Therefore, the accuracy to which the 
electronic configuration remains on the Born-Oppenheimer surface and the ionic con- 
figuration evolves at constant energy during a dynamical simulation is not a result of treating 
the electronic degrees of freedom as classical degrees of freedom. Instead it is shown that 
the accuracy of the constant energy evolution of the ionic system in a molecular dynamics 
calculation is explained by the tendency for errors in the Hellmann-Feynman forces to cancel 
when the molecular dynamics equations of motion are used to evolve the electronic degrees 
of freedom. A quantitative analysis of this error cancellation is presented. By analysing the 
magnitude of the error in the electronic wavefunction, a criterion is developed for the 
maximum velocity of propagation of the ions at which the evolution of the electronic 
configuration remains stable. 

1. Introduction 

The molecular dynamics method developed by Car and Parrinello (1985) has produced 
an enormous increase in the power of the total energy pseudopotential technique (for 
details of the total energy pseudopotential technique see Ihm et a1 1979). Dynamical 
simulations of ionic systems can be performed in which the electronic configuration is 
relaxed to its groundstate using the molecular dynamics method and the forces on the 
ions are calculated using the Helmann-Feynman theorem (Hellmann 1937, Feynman 
1939). One of the remarkable things about the molecular dynamics method is the 
ability to perform dynamical simulations of the ionic configuration for several thousand 
timesteps with a negligible loss of energy from the ionic system (Hohl et a1 1987, Car and 
Parrinello 1988, Ballone et a1 1988), which would appear to require that the Hellmann- 
Feynman forces are correct to an extremely high accuracy. Hellmann-Feynman forces 
are notoriously sensitive to errors in the electronic wavefunction; the errors in the 
Helmann-Feynman forces are first order with respect to the error in the wavefunction 
so that the accuracy in the Hellmann-Feynman forces can only be achieved if the 
electronic configuration is the instantaneous groundstate configuration to the same 
accuracy. The ionic configuration is constantly evolving in a dynamical simulation and 
it is almost inconceivable that the electronic configuration remains this close to the 
instantaneous groundstate during the entire simulation. It has been suggested that the 
accuracy of the ionic trajectories is a result of using molecular dynamics equations of 
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motion t o  evdvc  borh the ionic and electronic degrees of freedom. This appears to imply 
that the electronic and ionic degrees of freedom are in thermal equilibrium. In Q 2 it will 
be shown that this is definitely not the case. The electronic degrees of freedom do 
not behave like classical degrees of freedom; the motions of the electronic states are 
continuously damped by the constraint of normalisation even when there is no damping 
explicitly applied in the molecular dynamics equations of motion for these degrees of 
freedom. In Q 3 the evolution of the electronic degrees of freedom is investigated in 
greater detail. It is shown that during a dynamical simulation of the ionic system energy 
is continually supplied to the electronic degrees of freedom and then removed by the 
damping due to the constraint of normalisation. The accuracy of the constant energy 
evolution of the ionic system is critically dependent on the damping of the electronic 
degrees of freedom. If the electronic degrees of freedom were undamped the energy of 
the ionic system would not be constant during a dynamical simulation: the electronic 
degrees of freedom would act as  a thermal reservoir for the ionic system and the energy 
of each ion would fluctuate according to a Boltzmann distribution. In Q 4 it is shown that 
the accuracy of the ionic trajectories is explained by a tendency for the errors in the 
Hellmann-Feynman forces to cancel when the molecular dynamics equations of motion 
are used to evolve the electronic configuration. This error cancellation makes the loss 
of energy from the ionic system second order with respect to the error in the electronic 
wavefunction. In Q 5 the stability of the evolution of the electronic configuration is 
considered and it is shown that the velocity of the ions must be restricted if the electronic 
configuration is to evolve stably. 

2. Evolution of the electronic degrees of freedom 

In the molecular dynamics formulation the electronic wavefunctions are treated as 
dynamical variables and a kinetic energy term appears in the Lagrangian for each of 
these degrees of freedom. In a dynamical simulation of the ionic system the ionic degrees 
of freedom are also included as dynamical variables in the Lagrangian and the molecular 
dynamics Lagrangian is written as follows: 

where vi are the electronic states, p is a fictitious mass associated with the dynamics of 
the electronic states, M I  is the mass of ion I and RI is its position, and E is the Kohn- 
Sham energy functional (Kohn and Sham 1965). The fictitious mass associated with the 
dynamics of the electronic states p will be set equal to unity from now on and the 
electronic configuration will be represented by a many-particle wavefunction q which 
in the case of a density functional calculation is a simple product of single-particle 
wavefunctions. 

The molecular dynamics Lagrangian gives the following equation of motion for the 
electronic wavefunction 

.3; = - ( H -  A)+ (2) 
where H i s  the Kohn-Sham Hamiltonian and A is esentially just an energy shift that is 
normally taken to be equal to the expectation value of the energy of state V .  

If q is expanded in the basis set of the eigenstates of Hamiltonian H 
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and (3) is substituted into (2), the following equation of motion for the coefficient of the 
basis state cp, is obtained: 

e, = -(E, - A)c, (4) 
where E, is the eigenvalue of q,. 

are zero initially gives the coefficients at time t as 
Integrating these equations of motion assuming that the velocities of the coefficients 

cn( t )  = COS[(&, - A)”2t]C, (O)  

~ , ( t )  = cosh[/&, - A1”2t]~,(0) 

E, > A  
E, < A  

where c,(O) is the value of the coefficient initially. 
It can be seen that the amplitudes of the coefficients of the eigenstates of H which 

have energies greater than A oscillate with time, while the amplitudes of the coefficients 
of the eigenstates with energies less than A increase with time so that the total magnitude 
of qj under the unconstrained molecular dynamics equations of motion increases with 
time provided that the value of A is larger than the ground-state energy of H and that qj 
spans the ground state. Under the unconstrained dynamics the magnitude of qj will only 
remain constant in time if the energy shift A is chosen to be less than the ground-state 
energy. Such a choice for A would never allow the system to reach a global energy 
minimum and Hellmann-Feynman forces could not be calculated because would 
never be an eigenstate of the Hamiltonian. Therefore the value of A must be chosen to 
be larger than the ground-state energy for a molecular dynamics calculation to be 
successful. Under the constrained dynamics the electronic wavefunction must remain 
normalised and if A is larger than the ground-state eigenvalue normalising the wavefunc- 
tion will reduce the magnitudes and the velocities of the coefficients c,. This reduces the 
kinetic energy in the electronic degrees of freedom and thus damps the motions of the 
electronic degrees of freedom even when there is no damping explicitly applied in the 
molecular dynamics equations of motion. The removal of the excess energy from the 
electronic degrees of freedom eventually forces the electronic configuration to converge 
to the groundstate. In the following section it will be shown that the removal of the 
kinetic energy from the electronic degrees of freedom is necessary if the ionic system is 
to evolve at constant energy during a dynamical simulation. 

3. Evolution of electronic and ionic degrees of freedom 

If all the degrees of freedom in the molecular dynamics Lagrangian behaved as classical 
degrees of freedom the total energy associated with all the degrees of freedom in the 
Lagrangian would be constant because the Lagrangian is independent of time so that 

i p  1 dr3/GiI2 + i M 1 / k 1 l 2  + E[{qj,}, {R, ) ]  = constant. 
I 

(7) 

If the motions of the ions are to be correctly described during a dynamical simulation 
the total energy in the ionic system should be constant, which requires that 

Equations (7) and (8) imply that the kinetic energy of the electronic degrees of 
freedom must be constant if the total energy in the ionic system is to remain constant. 
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However, if the electronic configuration was at rest in its ground state before the ions 
started to move then the kinetic energy in the electronic degrees of freedom would be 
zero initially and according to (7) and (8) the electronic configuration cannot evolve to 
its new groundstate. In the previous section it was shown that the normalisation of the 
wavefunctions damps the motion of the electronic degrees of freedom so that (7) is 
actually not constant but instead decreases with time due to the damping of the electronic 
degrees of freedom. This provides a mechanism for removing kinetic energy from the 
electronic degrees of freedom but it cannot provide the kinetic energy needed for the 
electronic configuration to evolve to its new ground state. From (7) and (8) it would 
appear that the electronic configuration can only relax to its new ground state by 
removing energy from the ionic system. This would lead to a very large damping of the 
ionic motions and this is not observed in molecular dynamics calculations. If the ionic 
configuration is to evolve at constant energy the kinetic energy required for the electronic 
degrees of freedom to evolve to the new ground state must be provided from a different 
source. The source of this energy will now be investigated. 

For an accurate description of the ionic trajectories the forces on the ions should be 
calculated only when the electronic configuration is in the instantaneous ground-state 
configuration. The forces are assumed to vary slowly along the paths of the ions and the 
change in the potential energy in the ionic system due to moving the ions is taken to be 

where H i s  the Hamiltonian, y o  is the instantaneous ground-state wavefunction at the 
beginning of the time step, f l  is the force on ion Z at the beginning of the time step and 
ARI is the distance move by ion 1. It will be assumed that the Coulomb energy of the 
ionic system is included in the Hamiltonian so that the derivative of the Hamiltonian 
with respect to the position of the ion includes the force exerted on the ion due to the 
Coulomb interaction with the other ions in the system. 

If the forces on the ions were calculated when the ions have reached their new 
positions before the electronic configuration is allowed to evolve to the new ground- 
state configuration it would be found that the forces on the ions had changed significantly 
from their initial values. The extra work involved in moving the ions against the forces 
generated by the fixed electronic configuration is ignored in molecular dynamics cal- 
culations but it is this work that provides the energy for the electronic configuration to 
evolve to the new ground-state configuration. This extra work appears in the energy of 
the electronic system as an excitation of the electronic configuration from its ground 
state. 

The work done moving the ions when the electronic configuration is kept fixed is 
equal to 

where R j  is the position of ion Z at the beginning of the time step, R: is its position at the 
end of the time step and f; is the instantaneous force on the ion. If this expression for 
the work done by the ion is computed and included in (7), the total energy associated 
with the molecular dynamics Lagrangian would remain constant during the displacement 
of the ions although damping of the electronic degrees of freedom by the constraint of 
normalisation would subsequently remove energy from the system. If the dynamics of 
the ions was generated from (10) energy would be transferred from the ionic system to 
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the electronic system and this would lead to a rapid damping of the motions of the ions 
and produce a totally fictitious dynamics for the ionic system. A correct description of 
the ionic dynamics is generated if (8) is constant and this requires that the forces on the 
ions are only calculated when the electronic configuration is in the ground state of the 
instantaneous ionic configuration. It will now be shown that the difference between the 
two values of the work done by the ions appears in the electronic degrees of freedom as 
an excitation of electronic configuration from its new ground state. 

The Hamiltonians for the ions in their instantaneous positions at the beginning and 
end of the time step will be written as H({R: } )  and H({R: } ) .  The eigenstates of these 
Hamiltonians are given by 

where each eigenstate is a many-particle eigenstate which in the case of a density 
functional calculation is a product of Kohn-Sham eigenstates. 

Hamiltonians H({R: } )  and H({R: } )  are related by 

H ( { R ? } )  = H ( { R ! } )  + AVion + AV,,,  (14) 
where ARI = Rf - R :  , ul(r)  is the ionic pseudopotential for ion Zand AVel is the change 
in the self-consistent electronic potential on displacing the ions from positions 
R: to R : .  

The electronic configuration at the beginning of the time step is in the ground state 
of Hamiltonian H({R: } )  and it remains in this state as the atoms are moved by ARl. The 
Hellmann-Feynmann forces on the atoms in positions R: are 

f :  = - ( q o / V l u I ( r  - R : ) l v o )  + F : >  (15) 
where F :  is the force exerted on ion l i n  position R !  due to the Coulomb interaction with 
the other ions in the system. 

The forces on the atoms in positions R :  before relaxing the electronic configuration 
are 

f : '  = - (qolvI~l(~ - R?)lYo)  + F : .  (16) 
After relaxing the electronic configuration to the ground state for the ions in positions 

R: the forces on the ions are given by 

f :  = -(XolVIul(r - R!)lXo) + F : .  (17) 
If the Hellmann-Feynman forces are calculated with the electrons in the instan- 

taneous ground-state configuration as the ions move between R :  and R :  the work done 
by the ions is equal to 

but if the electronic configuration remains in state qo the work done moving the ions 
against the fixed electronic configuration is equal to 
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Expressing q O  in terms of the basis set h} to first order in perturbation theory gives 

where AV,, = AV,,, + AV,, is the change in the total self-consistent potential on moving 
the ions from positions R:  to R : .  2 is a normalisation constant given by 

The difference between the two values for the work done by the ions is 

which is equal to 

t[(qo/AVionlqO) - (XOIAV~~~IXO)~ .  
Substituting for qO from (20) in (23) gives 

(23) 

To second order in the potentials AVsc and AVion the difference between the two values 
of the work done on moving the ions is 

The excitation energy in the electronic system after displacing the ions to positions 
R :  with the electronic configuration fixed in state q O  is 

((P 0 IH({R:)) - hAve1lq 0) - (xO I H({r?I) 1x0). (26) 
The factor o f t  multiplying AVel is a self-energy correction which is required because 
AVel is first order with respect to the change in the wavefunction. Substituting for qO 
from (20) in (26) gives 

(28) 
Re((XolAVs,lXn)(XnlAVeIIXo)) 

E o  - E n  
+ E  

n#O 

Expanding 1/Z2 to second order in AVsc and retaining terms to second order gives 
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The expectation value (xlH({R:})Ix) is quadratic with respect to all variations of x 
from xo. AV,] is first order with respect to variations in x from xo so by the variational 
principle the term (xolAVe,lxo) in (29) is zero. 

To second order in AVsc and AV,,, the excitation energy in the electronic system after 
displacing the ions from positions R:  to R :  is 

or 

which is equal to the difference between the two values for the work done by the ions 
(25). Therefore, the difference between the two values for the work done by the 
ions appears in the Kohn-Sham energy functional as an excitation of the electronic 
configuration from the ground-state configuration. The excess energy in the electronic 
system due to this excitation provides the kinetic energy needed to evolve the electronic 
configuration from cpo to xo. 

The ionic degrees of freedom in the molecular dynamics Lagrangian will behave like 
classical degrees of freedom and the ionic configuration will evolve at a constant total 
energy provided that the forces on the ions are always calculated with the electronic 
system in the ground state of the instantaneous ionic configuration. The electronic 
degrees of freedom do not behave like classical degrees of freedom. The constraint of 
normalisation damps the motion of the electronic degrees of freedom so that energy is 
continuously removed from the electronic degrees of freedom, forcing the electronic 
configuration to relax towards its ground state. When the ions are moving energy has to 
be continuously supplied to the electronic degrees of freedom to overcome the damping 
and allow the electronic configuration to evolve between the instantaneous ground 
states. The analysis presented above shows how this energy is provided without removing 
energy from the ionic degrees of freedom. 

The different behaviours of the degrees of freedom associated with the electronic 
and ionic systems is essential for the success of the molecular dynamics method. If the 
ionic and electronic degrees of freedom both behaved as classical degrees of freedom 
then by equipartition all the available energy in the system would be shared equally 
amongst all the degrees of freedom. In a molecular dynamics total energy pseudo- 
potential calculation with a plane wave basis set there are typically a factor of lo4 more 
electronic degrees of freedom than ionic degrees of freedom. If equipartition occurred 
the electronic system would have lo4 times as much thermal energy as the ionic system 
so that the electronic configuration could only be close to its ground state if the tem- 
perature of the ionic system was very close to zero. Energy would fluctuate between the 
electronic and ionic systems and because of the large number of degrees of freedom 
associated with the electronic system the electronic system would act as a heat bath for 
the ionic system. Hence the energy of each ion would vary with time according to a 
Boltzmann distribution and the constant energy evolution of the ionic system would be 
destroyed by thermal fluctuations. Only by maintaining a delicate balance between 
supplying energy to the electronic degrees of freedom and then damping these degrees 
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of freedom to remove this energy can the electronic configuration move between the 
instantaneous ground states without continually increasing the energy in the electronic 
degrees of freedom to the point where fluctuations of energy between the electronic and 
ionic systems would destroy the accuracy of the ionic trajectories. 

4. Error cancellation in the Hellmann-Feynman forces 

In the previous section it was shown how the electronic system acquires energy to move 
between ground states of the instantaneous ionic configuration without removing energy 
from the ionic system. However, the constant energy evolution of the ionic system still 
requires that the Hellmann-Feynman forces are calculated only when the electrons are 
in the instantaneous ground-state configuration and it would appear that the forces on 
the ions must be correct to an extremely high accuracy at each timestep in order to 
perform simulations for several thousand timesteps with a negligible loss of energy from 
the ionic system. It will now be shown that the accuracy of the Hellmann-Feynman 
forces does not have to be this high because a cancellation of the errors in the Hellmann- 
Feynman forces takes place when the molecular dynamics equations of motion are used 
to evolve the electronic degrees of freedom. The contribution to the Hellmann-Feynman 
force exerted on any ion due to Coulomb interactions between the ions can be calculated 
to arbitrary accuracy. As there is no error associated with the ionic contributions to the 
Hellmann-Feynman forces only the contributions to the Hellmann-Feynman forces 
from the electrons will be considered in this section. 

The origin of the cancellation of errors in the Hellmann-Feynman forces will first be 
described qualitatively and then a quantitative account of the effect will be given. A 
system containing a single atom which has one occupied electronic orbital will be 
considered for the qualitative analysis. The molecular dynamics equation of motion for 
the evolution of the electronic wavefunction is 

.3; = - ( H  - A ) q .  (321 
If the atom is at rest and the electronic wavefunction is the ground-state wavefunction 

then ( H  - A ) q  = 0 and the electronic wavefunction will be stationary, as expected. If 
the orbital is displaced away from the ion the magnitude of the acceleration of the 
wavefunction would be expected to increase roughly linearly with the displacement of 
the orbital from the ion for small displacements. If the ion starts to move the orbital will 
initially lag behind the ion but the acceleration of the orbital will cause the velocity of 
the orbital to increase until the orbital overtakes the ion. As the orbital ovetakes the ion 
the acceleration of the wavefunction will change sign and the orbital will begin to slow 
down. Hence if the ion moves at constant velocity the orbital will tend to oscillate around 
the instantaneous position of the ion. The value of the Hellmann-Feynman force exerted 
on the ion by the orbital will oscillate around the correct value so that the error in the 
Hellmann-Feynman force will cancel when averaged over a number of timesteps. The 
oscillation of the error in the Hellmann-Feynman force will prevent a continuous transfer 
of energy from the ion to the electronic degrees of freedom. 

A first-order equation of motion gives the following expression for the evolution of 
the electronic orbital 

q = - ( H -  A ) q .  (33) 
With this equation of motion the velocity of the orbital would be expected to increase 
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roughly linearly with the displacement of the orbital from the ion. Once the ion has 
begun to move the orbital will fall further behind the ion until its velocity is equal to 
the velocity of the ion and then the orbital will remain a fixed distance behind the 
instantaneous position of the ion. The Hellmann-Feynman force exerted by the orbital 
on the ion will have a systematic error because the orbital will always lag behind the ion. 
The ion will appear to be moving in a viscous medium because the damping force exerted 
by the orbital on the ion is proportional to the velocity of the ion. These qualitative 
models suggest that the dynamics of the ionic system will be more accurately described 
when a second-order equation of motion is used to evolve the electronic degrees of 
freedom than a first-order equation of motion. 

The cancellation of the errors in the Hellmann-Feynman forces will now be analysed 
quantitatively using the system described in § 3. The ions will be assumed to move at 
constant velocities between positions R :  andR! in a time T. Assuming a linear change 
in the self-consistent potential with respect to the positions of the ions the Hamiltonian 
at time t is  

H(t) = H({R?})  - [1 - (~/T)lAVsc (34) 
where H({R:}) is the Hamiltonian for the ions in positions R : ,  and AV,, is the change in 
the self-consistent potential on moving the ions from positions R:  to R ? .  The actual 
Hamiltonian at time twill differ from this expression if the electronic wavefunction at time 
tis not the instantaneous ground-state wavefunction because the potential generated by 
the electronic states will not be the self-consistent electronic potential. If the electronic 
configuration moves too far from the instantaneous ground-state configuration the 
evolution of the electronic configuration becomes unstable. In the following section a 
criterion will be developed for the maximum error that can be tolerated in the electronic 
wavefunction and it will be shown that this restricts the velocity of propagation of the 
ions. 

The ground-state wavefunction at time t ,  Vo(t) ,  to first order in perturbation theory 
is 

where k} are the eigenstates of Hamiltonian H({R:}) defined by (12). 
The electronic configuration is in the ground state of Hamiltonian H(t)  at t = 0. It 

will be assumed that the electronic configuration is stationary at this time but this 
assumption does not affect the following analysis because the error cancellation in the 
Hellmann-Feynman forces is independent of the initial velocities of the electronic 
degrees of freedom. During the time 0 < t G T the electronic configuration evolves 
according to the molecular dynamics equations of motion 

= - ( H ( 0  - E(t))V(t) (36) 

where 49 = ( W ) I ~ ( t ) l V ( 9 ) .  
The contribution to the calculated Hellmann-Feynman force exerted on ion l a t  time 

t due to the electrons is given by 

f; ( 4  = (V(t)lV1udr - R,(O)lW)) 

f d t )  = ( V O ( t ~ I V I ~ ~ ( ~  - RI(t))IVO(tN. 

(37) 

(38) 

whereas the correct contribution to the Hellmann-Feynman force is 
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The operator V,u,(r - R,) is not diagonal so the error in the Hellmann-Feynman 
force is first order with respect to the error in the wavefunctions, as mentioned previously. 

Expanding the wavefunction v(t) in terms of the basis set h} 

n 

and substituting this expression into the molecular dynamics equation of motion gives 
the following equations of motion for the coefficients cn 

c n ( t >  = - ( E n  - E ( t ) ) C n ( t )  + E [I- ( t / ~ ) ~ ( ~ n I ~ ~ s c l ~ m ) c m ( t ) .  (40) 
m 

To first order in the self-consistent potential the coefficient co remains equal to 1 during 
the interval 0 < t < T, all the other coefficients remain of order AVsc and ~ ( t )  is equal to 

49 = E o  - [1 - (~/~)1(XolAVsc/Xo)~ (41) 
If (xolAVScIxo) is much smaller than any of the differences between the eigenvalue 

and the eigenvalues E, the equations of motion for the coefficients are approximately 
given by 

n # 0. (42) c n ( t )  = - ( E n  - E ( t ) ) C n ( t )  + 11 - (t/T)I(~nlAVsc/~o) 

These equations can be integrated to give the wavefunction at time t as 

The first two terms in (43) are equal to the instantaneous ground state wavefunction 
v0(t) so the final term in (43) represents the error in the wavefunction at time t. It can 
be seen that the error in the wavefunction is oscillatory in time. Hence the errors in the 
Hellmann-Feynman force exerted on a single ion will be oscillatory in time and the 
errors will tend to cancel when averaged along the trajectory of the ion so that there will 
not be a continuous transfer of energy from the ions to the electronic degrees of freedom. 

With the approximations introduced above the first-order equations of motion for 
the evolution of the coefficients cn are 

n # 0. (44) d n ( t )  = - ( E n  - E O ) C n ( t )  + 11 - (t /T)I(~nlAvscl~o) 
Solving for the wavefunction at time t gives 

It can be seen that the error in this wavefunction is single signed and that the error 
in the wavefunction tends to a constant at large times. The error in the Hellmann- 
Feynman force exerted on a single ion will always be in the same direction and the error 
in the force will not average to zero when integrated along the path of the ion so that 
there will be a continuous transfer of energy from the ions to the electronic degrees of 
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freedom when a first order equation of motion is used to evolve the electronic degrees 
of freedom. 

The loss of energy from the ionic system becomes second order with respect to the 
error in the electronic wavefunction when the molecular dynamics equations of motion 
are used to evolve the electronic degrees of freedom but it is first order with respect to 
error in the wavefunction when a first-order equation of motion is used to evolve the 
electronic degrees of freedom. To obtain the most accurate ionic trajectories in a 
dynamical simulation the electronic degrees of freedom should, therefore, be evolved 
using the molecular dynamics equations of motion. 

The magnitude of the error in the electronic wavefunction is proportional to A V,,/T 
when either the first- or second-order equations of motion are used to evolve the 
electronic degrees of freedom so the error in the wavefunction is proportional to the 
velocity of the ions. Hence, the magnitude of the error in the electronic wavefunction 
can be decreased by increasing the masses of the ions with respect to the fictitious mass 
of the electronic degrees of freedom so that the ions move more slowly with respect to 
the electronic degrees of freedom. 

5. Stability of electronic configuration 

The analysis presented in the previous section assumed that the electronic configuration 
remained close to the instantaneous ground state so that potential remained close to the 
self-consistent potential Vsc. If the error in the coefficient c, is 6c, and the total change 
in the coefficient c, during the movement of the ions from positions R i  to R: is Ac, then 
(SC,/AC,)AV,, is the error in the electronic potential due to the error in the wavefunction. 
The error in the electronic potential must be smaller than the self-consistent potential 
V,, or the evolution of the electronic Configuration will become unstable because the 
evolution of the electronic configuration will be driven solely by the electronic potential. 
The change in the electronic potential at wavevector G during the movement of the ions 
from positionsR: to R : ,  AVel(G), is roughly GAR times the total electronic potential at 
wavevector G ,  where AR is the average distance moved by the ions. Therefore the 
criterion for stability during the evolution of the electronic configuration for the second- 
order equation of motion is 

GAR/(&, - ~ 0 ) ~ ’ ~ ~ e  IVsc(G)/Vel(G)I ( 4 4 )  

GAR/(&, - EO)T e IVsc(~>/Vel(G)l (47) 

and for the first-order equation of motion the criterion for stability is 

where V,,(G) is the self-consistent potential at wavevector G and Ve,(C) is the electronic 
potential at wavevector G .  The difference in the power law dependence of these 
equations on E, - eo is due to the different definition of time in the first- and second- 
order equations of motion. 

The value of ~Vsc(G)/Vel(G)~ can be calculated from the dielectric function. If the 
magnitude of the dielectric function is large 1 Vsc(G)/Vel(G)~ is inversely proportional to 
the dielectric function. At small wavevectors the magnitude of the dielectric function 
varies as 1/G2 so that I V,,(G)/Vel(G) I is proportional to G2. According to (46) and (47) 
the largest velocity of the ions at which the electronic configuration evolves stably is 
proportional to the magnitude of the smallest reciprocal-lattice vector. The magnitude 
of the smallest reciprocal-lattice vector is inversely proportional to the magnitude of 
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largest unit cell vector hence the largest permissible velocity of propagation for the ions 
is inversely proportional to the longest length of an edge of the unit cell. The smallest 
value of E, - .c0 can also depend on the size of the system. If the system has a gap in the 
energy spectrum then the minimum value of E, - is independent of the size of the 
system but if there is no gap in the spectrum the minimumvalue of E, - will get smaller 
as the size of the system increases. However the difference between two wavefunctions 
on the same branch of the band structure is roughly proportional to the difference 
between their energies which suggests that the error in the electronic wavefunction due 
to replacing the groundstate wavefunction by an excited state wavefunction of energy 
E, is roughly proportional to E, - provided that E, - c0 is small. In this case the 
stability criterion should not be particularly sensitive to the minimum value of E, - E~ 

provided that the excited-state many-particle product wavefunction X ,  differs from the 
ground-state wavefunction xo by electron-hole pair excitations in which the electron 
and hole occupy the same band. 

The magnitude of the errors in the Hellmann-Feynman forces when the second- 
order equation of motion is used to evolve the electronic configuration will be reduced 
further by normalisation of the wavefunctions. Any form of damping will reduce the 
amplitude of the oscillatory part of the electronic wavefunction faster than the slowly 
varying part. The velocities associated with the errors in the wavefunction are larger 
than the velocity of the ground-state wavefunction so that damping due to the constraint 
of normalisation will tend to reduce the relative magnitude of the error in the wavefunc- 
tion. 
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